q^2-80=-37

Simple and best practice solution for q^2-80=-37 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2-80=-37 equation:



q^2-80=-37
We move all terms to the left:
q^2-80-(-37)=0
We add all the numbers together, and all the variables
q^2-43=0
a = 1; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·1·(-43)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{43}}{2*1}=\frac{0-2\sqrt{43}}{2} =-\frac{2\sqrt{43}}{2} =-\sqrt{43} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{43}}{2*1}=\frac{0+2\sqrt{43}}{2} =\frac{2\sqrt{43}}{2} =\sqrt{43} $

See similar equations:

| -7r+14=34 | | -11=c/3 | | 0.45x=855 | | -9r+15=33 | | x÷11-8=3 | | 2k+21=175 | | 9/4x+5=9/21 | | 43.96=3.14c | | (5x+10)/6=(8x+3)/7 | | 43.96=3.14s | | 0.82x=200 | | 44=-4n | | 7+2b=29 | | (4x-28)+(9x)=180 | | 12h-5=19 | | g^2+46=-35 | | p^2=-5 | | s^2-73=-80 | | v^2+80=0 | | (n+5)(n-1)=0 | | p÷6=8 | | e/8+13=17 | | 27^x-5.9^x-3^x+2+45=0 | | (x+32)=(5x-23) | | 1/3x-3=60 | | Y=500+17x | | q/3+32=42 | | 80x=800+30x | | x-16=31 | | 1x+3=1x-4 | | 3b+4b=3.75 | | 9x=(5x+32) |

Equations solver categories